Logistic 回归模型在乳腺小结节 超声鉴别诊断中的应用
CSTR:
作者:
作者单位:

作者简介:

沈严严,E-mail :syybwk@163.com

通讯作者:

中图分类号:

基金项目:

衡阳市社会发展科技支撑计划(No :2011KS32)


Application of Logistic regression model in differential diagnosis of small breast nodules by ultrasound
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    目的 筛选出乳腺小结节(直径≤ 1 cm)良、恶性鉴别诊断的超声征象,建立Logistic 预报回归模型。 方法 回顾性分析215 例女性乳腺小结节患者的临床资料,以病理结果为因变量,超声征象及年龄作为自变量, 建立二分类Logistic 回归模型,绘制ROC 曲线,评价回归模型的预测能力。结果 经Logistic 回归分析内部 回声均匀性、形态、边缘特征、纵横比、血流分级、血流阻力指数、高回声声晕、微钙化、同侧腋窝淋巴结 肿大及年龄进入回归方程。不同超声特征经Logistic 回归分析中最大似然比分析,差异有统计学意义(P <0.05)。Logistic 回归模型与术前超声诊断正确率分别为94.2% 和87.2%。Logistic 回归模型的曲线下面积为0.918(95% CI :0.873,0.963)。结论 基于超声征象建立的Logistic 回归模型有较高的预报准确率和临床实用性。

    Abstract:

    Objective To screen the ultrasound features of benign and malignant small breast nodules (diameter≤1cm) and to establish a logistic prediction regression model. Methods The clinical data of 215 female patients with small breast nodules were retrospectively analyzed. Pathological results were used as dependent variables, while ultrasound signs and age were used as independent variables. Binary Logistic regression based on maximum likelihood estimation in partial forward step-wise was used to establish regression model. The receiver operating characteristic curve (ROC) is used to evaluate the diagnostic efficacy of regression model. Results The internal echo uniformity, shape, margin, aspect ratio, flow grade, flow resistance index, hyperechoic halo, microcalcification, ipsilateral axillary lymphadenectasis and age were entered the Logistic equation. The different ultrasound features independently predicting diagnostic efficacy of malignant nodules in breast, which was statistically significant (P < 0.05). The correct rates of Logistic regression model and preoperative ultrasound diagnosis were 94.2% and 87.2%, respectively. The area under the curve (AUC) of logistic regression model was 0.918 (95% CI: 0.873, 0.963). Conclusions The Logistic regression model based on ultrasound signs had high prediction accuracy and high clinical applicability.

    参考文献
    相似文献
    引证文献
引用本文

廖孟霞,沈严严,刘灿,王松,蒋迪,刘瑛,杨继辉. Logistic 回归模型在乳腺小结节 超声鉴别诊断中的应用[J].中国现代医学杂志,2019,(10):62-66

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2018-11-20
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2019-05-30
  • 出版日期:
文章二维码