老年糖尿病患者合并颈动脉硬化斑块的风险预测模型构建
CSTR:
作者:
作者单位:

甘肃省康复中心医院 老年病康复科, 甘肃 兰州 730000

作者简介:

通讯作者:

中图分类号:

R587

基金项目:

甘肃省科技计划项目(No:22YF3FA007)


Development of a risk prediction model for carotid atherosclerotic plaques in elderly diabetic patients
Author:
Affiliation:

Department of Geriatric Rehabilitation, Gansu Rehabilitation Center Hospital, Lanzhou, Gansu 730000, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    目的 探讨老年糖尿病患者合并颈动脉硬化斑块形成的因素,并构建风险预测模型,为临床早期筛查和个性化管理提供科学依据。方法 回顾性分析2022年6月—2024年6月甘肃省康复中心医院收治的120例老年糖尿病患者,根据颈动脉内中膜厚度(IMT)结果分为正常组(21例)、增厚组(28例)和斑块组(71例)。收集所有患者的临床资料,通过单因素分析筛选与颈动脉硬化斑块有关的自变量,进一步采用多因素逐步Logistic回归分析构建风险预测模型,并利用受试者工作特征曲线评价模型的预测效能。校准曲线评估预测模型的准确性与拟合优度。结果 正常组、增厚组和斑块组吸烟指数构成、脑卒中患病率、高血压患病率、HbA1c、TG/HDL-C、TC/HDL-C、LDL-C/HDL-C、UACR和FIB水平比较,差异均有统计学意义(P <0.05)。多因素逐步Logistics回归分析结果显示:吸烟指数高[O^R = 4.871(95% CI:2.561,9.266)]、脑卒中[O^R = 4.839(95% CI:1.151,20.342)]、高血压[O^R = 7.978(95% CI:2.026,31.418)]、HbA1c水平高[O^R = 2.542(95% CI:1.272,5.079)]、TG/HDL-C水平高[O^R = 16.001(95% CI:1.877,136.432)]、TC/HDL-C水平高[O^R = 9.682(95% CI:2.369,39.579)]、LDL-C/HDL-C水平高[O^R = 33.469(95% CI:6.347,176.501)]、UACR水平高[O^R = 5.611(95% CI:1.288,24.440)]、FIB水平高[O^R = 4.212(95% CI:1.342,13.218)]均是糖尿病患者合并颈动脉硬化斑块的危险因素(P <0.05)。验证模型表明,校准误差为0.048,偏差校准曲线与理想曲线吻合良好,该模型的曲线下面积为0.970(95% CI:0.941,0.999),敏感性为85.7%(95% CI:0.756,0.930),特异性为97.2%(95% CI:0.817,0.999)。结论 吸烟指数越大,有脑卒中、高血压史,HbA1c、TG/HDL-C、TC/HDL-C、LDL-C/HDL-C、UACR及FIB水平升高均是老年糖尿病患者合并颈动脉硬化斑块的主要危险因素。所构建的风险预测模型具有较高的敏感性和特异性,能够为临床早期筛查与个性化管理提供有效支持。

    Abstract:

    Objective To investigate the factors affecting carotid atherosclerotic plaque formation in elderly patients with diabetes mellitus and to develop a risk prediction model, providing a scientific basis for early clinical screening and personalized management.Methods This retrospective study included 120 elderly diabetic patients admitted to Gansu Rehabilitation Center Hospital from June 2022 to June 2024. Based on the carotid intima-media thickness (IMT), patients were categorized into the normal group (n = 21), thickened group (n = 28), and plaque group (n = 71). The clinical data of all patients were collected. Univariable analysis was performed to identify independent variables associated with carotid atherosclerotic plaques, followed by multivariable Logistic regression analysis to construct a risk prediction model. The predictive performance of the model was evaluated using the receiver operating characteristic (ROC) curve, and its accuracy and goodness of fit were assessed using a calibration curve.Results Significant differences were observed in the smoking index, stroke incidence, hypertension prevalence, HbA1c levels, TG/HDL-C ratio, TC/HDL-C ratio, LDL-C/HDL-C ratio, UACR levels, and FIB levels (P < 0.05). Stepwise multivariable Logistic regression analysis identified high smoking index [O^R = 4.871 (95% CI: 2.561, 9.266) ], history of stroke [O^R = 4.839 (95% CI: 1.151, 20.342) ], history of hypertension [O^R = 7.978 (95% CI: 2.026, 31.418) ], elevated HbA1c levels [O^R =2 .542 (95% CI: 1.272, 5.079) ], increased TG/HDL-C ratio [O^R = 16.001 (95% CI: 1.877, 136.432) ], increased TC/HDL-C ratio [O^R = 9.682 (95% CI: 2.369, 39.579) ], increased LDL-C/HDL-C ratio [O^R = 33.469 (95% CI: 6.347, 176.501) ], elevated UACR levels [O^R = 5.611 (95% CI: 1.288, 24.440) ], and elevated FIB levels [O^R = 4.212 (95% CI: 1.342, 13.218) ] as independent risk factors for carotid atherosclerotic plaques in diabetic patients (P < 0.05). Model validation showed a calibration error of 0.048, with the calibration curve closely matching the ideal curve. The area under the ROC curve (AUC) of the model was 0.970 (95% CI: 0.941, 0.999), with a sensitivity of 85.7% (95% CI: 0.756, 0.930) and a specificity of 97.2% (95% CI: 0.817, 0.999).Conclusion Higher smoking index, history of stroke and hypertension, and elevated levels of HbA1c, TG/HDL-C, TC/HDL-C, LDL-C/HDL-C, UACR, and FIB are major risk factors for carotid atherosclerotic plaques in elderly diabetic patients. The established risk prediction model demonstrates high sensitivity and specificity, offering effective support for early clinical screening and personalized management.

    参考文献
    相似文献
    引证文献
引用本文

刘海,万守谦,董雯丽,徐永权,苏海霞.老年糖尿病患者合并颈动脉硬化斑块的风险预测模型构建[J].中国现代医学杂志,2025,35(8):55-61

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-11-07
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-04-18
  • 出版日期:
文章二维码