基于磁共振成像参数、多模态超声构建局部晚期乳腺癌新辅助化疗效果的预测模型
CSTR:
作者:
作者单位:

1.中国人民解放军联勤保障部队第九四〇医院 超声诊断科, 甘肃 兰州730050;2.上海天佑医院 超声科, 上海 200331

作者简介:

通讯作者:

闫瑞玲,E-mail:1217949187@qq.com;Tel:13919765595

中图分类号:

R737.9

基金项目:

甘肃省科技计划重点研发项目(No:23YFFA0035)


Predictive model for neoadjuvant chemotherapy response in locally advanced breast cancer based on MRI parameters and multimodal ultrasound
Author:
Affiliation:

1.Department of Ultrasonic Diagnosis, The 940 Hospital of the Joint Service Support Force of the Chinese People's Liberation Army, Lanzhou, Gansu 730050, China;2.Department of Ultrasound, Shanghai Tianyou Hospital, Shanghai 200331, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    目的 构建并验证基于磁共振成像(MRI)参数、多模态超声的局部晚期乳腺癌新辅助化疗效果预测模型。方法 回顾性分析2019年1月—2023年5月中国人民解放军联勤保障部队第九四〇医院收治的238例局部晚期乳腺癌患者的临床资料,按照8∶2随机分为训练集(167例)和内部验证集(71例)。另回顾性分析2023年6月—2024年6月该院收治的66例局部晚期乳腺癌患者的临床资料为外部验证集。患者新辅助化疗后行手术切除并统计病理完全缓解(pCR)情况。新辅助化疗前后行MRI、多模态超声检查,分析影响局部晚期乳腺癌患者新辅助化疗效果的因素,构建并验证基于MRI参数、多模态超声的局部晚期乳腺癌新辅助化疗效果预测模型。结果 训练集有39例(23.35%)达到pCR,内部验证集与外部验证集分别有16例(22.54%)、16例(24.24%)达到pCR。pCR组肿瘤分期Ⅲ期占比、峰值强度(PI)差值、新辅助化疗后达峰时间(TTP)、TTP差值、新辅助化疗后表观扩散系数(ADC)、ADC差值均高于非pCR组(P <0.05),新辅助化疗后PI低于非pCR组(P <0.05)。多因素逐步Logistic回归分析结果显示:肿瘤分期Ⅲ期[O^R =4.627(95% CI:1.582,13.538)]、ADC差值大[O^R =4.371(95% CI:1.494,12.788)]、PI差值大[O^R =3.785(95% CI:1.294,11.073)]均是影响局部晚期乳腺癌新辅助化疗效果的危险因素(P <0.05)。以影响因素为预测变量,建立列线图预测模型,风险范围0.08~0.56。列线图模型验证结果显示预测局部晚期乳腺癌新辅助化疗效果的校正曲线趋近于理想曲线(P >0.05)。训练集受试者工作特征(ROC)曲线结果显示:列线图模型预测局部晚期乳腺癌新辅助化疗效果的敏感性为79.94%(95% CI:0.673,0.887),特异性为78.66%(95% CI:0.676,0.873),曲线下面积(AUC)为0.823(95% CI:0.751,0.913)。内部和外部验证集ROC曲线结果显示:列线图模型预测局部晚期乳腺癌新辅助化疗效果的敏感性分别为82.67%(95% CI:0.711,0.917)和79.13%(95% CI:0.681,0.878),特异性分别为79.25%(95% CI:0.682,0.879)和83.19%(95% CI:0.715,0.923),AUC分别为0.874(95% CI:0.779,0.983)和0.867(95% CI:0.754,0.962),该模型诊断效能良好。结论 肿瘤分期、ADC差值、PI差值与局部晚期乳腺癌患者新辅助化疗效果有关,基于此构建局部晚期乳腺癌新辅助化疗效果的预测模型效能良好。

    Abstract:

    Objective To develop and validate a predictive model for neoadjuvant chemotherapy response in locally advanced breast cancer based on magnetic resonance imaging (MRI) parameters and multimodal ultrasound.Methods A retrospective analysis was conducted on data from 238 patients with locally advanced breast cancer who were treated at the 940 Hospital of the Joint Service Support Force of the Chinese People's Liberation Army from January 2019 to May 2023. They were randomly divided into the training set (167 cases) and the internal validation set (71 cases). Another retrospective analysis was conducted on data from 66 patients with locally advanced breast cancer who were treated at the same hospital from June 2023 to June 2024 for external validation. Patients underwent surgical resections after neoadjuvant chemotherapy, and the pathological complete response (pCR) was analyzed. MRI and multimodal ultrasound examinations were performed before and after neoadjuvant chemotherapy to analyze factors influencing the therapeutic response in patients with locally advanced breast cancer. Based on MRI parameters and multimodal ultrasound features, a predictive model for neoadjuvant chemotherapy efficacy was developed and validated.Results Thirty-nine cases (23.35%) reached pCR in the training set, and 16 (22.54%) and 16 cases (24.24%) reached pCR in the internal validation set and the external validation set, respectively. The proportion of stage III tumors, the change in PI (ΔPI), post-chemotherapy TTP, change in TTP (ΔTTP), post-chemotherapy ADC, and change in ADC (ΔADC) were all significantly higher in the pCR group than in the non-pCR group (P < 0.05), whereas the post-chemotherapy PI was significantly lower in the pCR group (P < 0.05). Multivariable stepwise Logistic regression analysis revealed that stage III tumors [O^R = 4.627 (95% CI: 1.582, 13.538) ], high ΔADC [O^R = 4.371 (95% CI: 1.494, 12.788) ], and high ΔPI [O^R = 3.785 (95% CI: 1.294, 11.073) ] were all risk factors affecting the effect of neoadjuvant chemotherapy in locally advanced breast cancer (P < 0.05). Influencing factors were used as predictor variables to establish a nomogram prediction model, with the predicted risk ranging from 0.08 to 0.56. The calibration curve of the nomogram model for predicting the efficacy of neoadjuvant chemotherapy in patients with locally advanced breast cancer closely approximated the ideal curve (P > 0.05). In the training set, the ROC curve analysis showed that the nomogram had a sensitivity of 79.94% (95% CI: 0.673, 0.887), a specificity of 78.66% (95% CI: 0.676, 0.873), and an area under the curve (AUC) of 0.823 (95% CI: 0.751, 0.913). In the internal and external validation sets, the model demonstrated sensitivities of 82.67% (95% CI: 0.711, 0.917) and 79.13% (95% CI: 0.681, 0.878), specificities of 79.25% (95% CI: 0.682, 0.879) and 83.19% (95% CI: 0.715, 0.923), and AUCs of 0.874 (95% CI: 0.779, 0.983) and 0.867 (95% CI: 0.754, 0.962), respectively, indicating good diagnostic performance of the model.Conclusion Tumor stage, change in ADC, and change in PI are associated with the efficacy of neoadjuvant chemotherapy in patients with locally advanced breast cancer. The predictive model for treatment response constructed based on these factors demonstrates good performance.

    参考文献
    相似文献
    引证文献
引用本文

欧兴密,郑英,左思阳,陈蕊,闫瑞玲.基于磁共振成像参数、多模态超声构建局部晚期乳腺癌新辅助化疗效果的预测模型[J].中国现代医学杂志,2025,35(16):1-8

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-03-03
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-08-11
  • 出版日期:
文章二维码